Aberrant expression of centractin and capping proteins, integral constituents of the dynactin complex, in fetal down syndrome brain.
نویسندگان
چکیده
Down syndrome (DS, trisomy 21) is the most frequent genetic cause of mental retardation. Although known for more than a hundred years the underlying pathomechanisms for the phenotype and impaired brain functions remain elusive. Performing protein hunting in fetal DS brain, we detected a series of cytoskeleton proteins with aberrant expression in fetal DS cortex. Fetal brain cortex samples of controls and DS of the early second trimenon of gestation were used for the experiments. We applied two-dimensional electrophoresis with in-gel digestion of protein spots, subsequent mass spectroscopical (MALDI) identification, and quantification of spots using specific software. Centractin alpha, F-actin capping protein alpha-1, alpha-2 and beta subunits were significantly reduced in fetal DS cortex, whereas dynein intermediate clear 2, dynein intermediate chain 2, and kinesin light chain protein levels were unchanged. Centractins and F-actin capping proteins are major determinants of the cytoskeleton and are involved in pivotal functions including cellular, organelle, and nuclear motility. Deranged centractins and F-actin capping proteins may represent or induce deficient axonal transport and may well contribute to deterioration of the cytoskeleton's mitotic functions in trisomy 21.
منابع مشابه
Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles
Centractin (Arp1), an actin-related protein, is a component of the dynactin complex. To investigate potential functions of the protein, we used transient transfections to overexpress centractin in mammalian cells. We observed that the overexpressed polypeptide formed filamentous structures that were significantly longer and more variable in length than those observed in the native dynactin comp...
متن کاملOverexpression of normal and mutant Arp1alpha (centractin) differentially affects microtubule organization during mitosis and interphase.
Dynactin is a large multisubunit complex that regulates cytoplasmic dynein-mediated functions. To gain insight into the role of dynactin's most abundant component, Arp1alpha was transiently overexpressed in mammalian cells. Arp1alpha overexpression resulted in a cell cycle delay at prometaphase. Intracellular dynactin, dynein and nuclear/mitotic apparatus (NuMA) protein were recruited to multip...
متن کاملReduction of actin-related protein complex 2/3 in fetal Down syndrome brain.
Down syndrome (DS) patients present with morphological abnormalities in brain development, leading to mental retardation. Given the importance of actin cytoskeleton to form the basis of various cell functions, the regulation of actin system is crucial during brain development. We therefore aimed to study the expression levels of actin binding proteins in fetal DS and control cortex. We evaluate...
متن کاملتأثیر شش هفته بستن عصب سیاتیک بر بیان ژن داینکتین عصب سیاتیک در موشهای صحرایی نر نژاد ویستار
Background & Aims : Axonal transport is a vital process in nervous system that protects axons and nerve terminals through supplying proteins, lipids and mitochondria and clearing folded proteins to avoid toxicity. Recently it is reported that impairment of motor proteins involved in axonal transport-like dynactin is a common factor in several neurodegenerative disorders such as Amyotrophic ...
متن کاملSelf-regulated polymerization of the actin-related protein Arp1
The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical and biophysical research communications
دوره 291 1 شماره
صفحات -
تاریخ انتشار 2002